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Buckling Theory in Solid Structure with Small Thickness : Part 2
Application to the Externally Pressurized Cylindrical Shell Buckling

Youngjoo Kwon*
(Received September 26, 1992)

A consistent methodology for the analysis of buckling phenomena in three dimensional solids
developed in Part 1 is applied to a simple structure, i.e., the externally pressurized cylindrical
shell structure. The primary state of the shell is investigated analytically, using asymptotic
technique, and then the straightforward buckling analysis is followed up to the third order,
adopting the general stability theory in Part 1. The full analysis is done through the analytical
manner. Hence, the closed form solution is obtained. Finally, the result is compared with the

classical one.
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1. Introduction

Succeeding the previous work (i.e., the general
stability theory development in Part 1 (Kwon,
1992)), the controversial structural stability prob-
lem, i. e., the externally pressurized cylindrical
shell buckling problem, is treated, adopting the
general stability theory developed in Part 1
(Kwon, 1992). The same problem was solved by
Timosenko(1961), using the classical nonlinear
shell theory with limitations. Similar other prob-
lems were treated by Nash(1955), Donnell(1956),
Galletly and Bart(1956), Singer(1960), Sobel
(1964) and Cheng et al. (1971). Thereafter,
Triantafyllidis and Kwon(1987) solved the same
problem for the incompressible material shell
structure, also using the asymptotic technique.
Here, the compressible isotropic hypoelastic
cylindrical shell is pressurized externally, and
then the forthcoming buckling phenomenon is
analysed.

The prebuckling state is solved in an asy-
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mptotic manner in the sense that the full analy-
tical primary solution is not required for the
asymptotic instabiltity analysis. The stability
analysis is done up to the third order. Hence, the
four term critical load parameter expansion is
obtained, and the corresponding five term critical
load (external hydrostatic pressure) expansion is
obtained with respect to the thickness parameter.

The imperfection effect on the buckling is not
considered in this analysis.

2. The Primary State

The primary state for the pressurized long
cylindrical shell is just a plane strain one if the
shell is long enough. Both ends of the cylindrical
shell are assumed to be stress free, but a proper
forced boundary condition is applied to prevent
the rigid body motion. And the principal axes of
strain remain fixed with respect to the material
point. Hence, the principal stretch ratios of a
material point, whose distances from the cylinder
axis in the initial (stress free) and in the current
configuration are denoted by R and » respective-
ly, are given by

=L p=1, A, =0T
Ne=— Rs Az—‘l5 /17‘_ dR’ (1)
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in the cylindrical coordinate (7, 8, z), Now, we
have to choose a proper coordinate system (6%, ¢)
for the application of the general theory devel-
oped in Part 1. Here, the natural selection of (4¢,
¢) may be

f'=8,
6*=z,
=t=y—{r:+h/2), (2)

where y, is the inner radius of the deformed
current cylindrical shell and % is the deformed
current shell thickness. Hence, we take the de-
formed current configuration as the reference one.
Therefore, the principal stretch ratios in (1) can
be written in terms of (8%, &) as

A= +ri+h/2)/R,

/12: 1»

A=dt/dR. (3)
Now, for the compressible isotropic material, the
constitutive equation is

n=Jo:=2A M (no sum) (J=A1Ads), (4)

where W = W(A;, A A3) is a strain energy density
function, ¢, is the principal Cauchy stress in the
deformed current configuration and r; is the
principal Kirchhoff stress. Here, we consider only
a simple material whose uniaxial stress-strain
behavior is a piecewise power-law. A strain ener-
gy density function W which describes such a
material is

Teyx+1_ _2V Tey2
Ayl Ty

+ﬁ(61+62+63)2+ C, (5)

W(/h, AZ! /13) Esy[

in which the equivalent Kirchhoff stress 7, is
related to the equivalent logarithmic strain g, by
the relation

ey _(Teyx_ LTV
(?y)—(ry) ( ) (6)

where y= 1 if eeg2(l+u)ey/3, x=mif g,>2(1
+v)ey/3, ey=r1,/E is the initial yield strain, z, is
the initial yield stress, and s is the hardening
exponent. Also, F is the Young’s modulus, p is
the Poisson’s ratio and the constant C which
depends on £, y, m, and g, is constructed so

that it assures the continuity of W at ¢,=2(1+ )

ey/3. The equivalent logarithmic strain g, is
expressed in terms of the principal logarithmic
strains g,=InJ, by the relation

622%(&‘%4-654‘6%—6162—6253_6361)%-
(7N
For the isochoric deformations, the limit y — 0.5
of the above expression for the strain energy
density function yields the incompressible descrip-
tion. Now using (5), (4) may take the following
form

— Te\ Oce E
r,=Fey (Ty a—&+m(€1+62+63)-

(8)

We treat only the case of s =1 in this study, since
the buckling phenomenon of the extérnally pres-
surized long cylindrical shell is assumed to occur
in the elastic range. Now, the only nontrivial
equilibrium equation in the cylindrical coordi-
nates is, using the physical components,

003 9% | ;=0

or r
with  g3=0at y=y,, g3=—po at r=r,  (9)
for the externally pressurized case. The Eq. (9) is
usually the highly non-linear differential equation
whose solution is extremely difficult to obtain
analytically. However, we can solve the above Eq.
(9) asymptotically in the sense that we don’t need
the full analytical primary solution for the
asymptotic bifurcation analysis. We write the Eq.
(9) in terms of the coordinate system (§°, ¢) as

%Og+€{(f+ 2) %?4‘0’3—01}:0

with &= C/E?’i, 55};/7/1-, (10)

where j=y,—»; is the constant current shell
thickness and we take »; as the reference leng-
th(L) of the current cylinder shell configuration.
And so =}/, is the current thickness parame-
ter. And also, we have the corresponding bound-
ary condition as

6r(—3) =0, 03(3) =—po
with 0=0a(€ 1 A(e), ) —h-<E<e (D)

where A=y;/R; is defined as the load parameter
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and R, is the initial inner radius of the cylindrical
shell. For the asymptotic solution, we may have
the following expansion

R* (& =K
—R(&) + R(&) e+ R(&) &+ R(£) &
+ ...
withR*(—%;e):l
A(E):f1+/116+f152+j153+... (12)

and the corresponding stress expansions are as-
sumed to be

I} 1 2
a=o+aetae+..
0 1 2
=0+ e+ e + ...
0 i 2
B=0+ get Ge ...
0 1 2
Do= Do+ poe+ po&®+ ..
Hence, we are ready to obtain the asymptotic
prebuckling solution. The general higher order
solutions are quite complicate, and so we just
record up to the first order solution.
The lowest order solution is obtained as follows.
The £° term of the Eq. (10) gives us the follow-
ing solution, using the corresponding boundary
condition

o E
o= T
(1— 1) A1-vIng,
0
02=”’"_"—E()%—0
(1— 5 AT=v1ng,
=0, (13)
with  $,=0

And, correspondingly, we may get

[} 4]
R=1, g’; =A% or R=irv(g44).
The first order solution is obtained as follows.
From the ¢! term of the Eq. (10), we may
obtain the following solution, using the corre-
sponding boundary condition,

1
o= Eo [(1 11_2’“111/1){ +(1— 3
(1——2/ A
eI+~ =i (n)

1
(5+7)],
! El/ 1’2)/
R= (1— ‘H/I)
(i 1y
{—~+(1—/il 4+ 1n/1 ) (E+ 2)}
A
&;=——ﬁ——-——F (Inf) (£+2)},
(1—vy
with,
1 1 l E
po=—@ly)=——% (14)
R Y 1=
And also, we may get
; I U O VDR S
A (E+7)[ 3+7{1_V(1—/11—V)
Tr%—l A}(E+-)]

Similarly, we may obtain the higher order solu-
tions. For example, from the &2 term of the Eq.
(10), we can obtain the following solution, at the
early stage,

2
@z——F————(er L1 —4=221nj)
(I—vy
1
A1l 91 1 —2+4+3y
{EJr—Z-(l—/hvv) (E+5)1+ 2{‘T—7—_
1—2, , 0 0 1
Wm} (InA) (&+5)), (15)
and hence,
2* 2 ]
Do —03(‘2_
1
———LE a1 nh g L
(1= A= g A
0 1 =243y 12y e O
AT0) 454 T (1__1/)21n/1}1n/1]

etc.
3. The Constitutive Law
For the STOREN-RICE hypoelastic material,

the incremental moduli [ “*! take, especially for
m= 11
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E

. 1 . . . .
ijRl th Ll Jk il
L T U)]{ 2 (g*g’t+g’*g")

+

v i 1 o
—2,¢°¢" =7 (g""
_+_gjlo_ik+gik0il+gilo.jk) X (16)
Or, using the physical components,

ol'=0,/7% 6%=0z 0¥=0; and ¢¥=0 for ;=,

we may have

L““={ﬁ%§1(f—_”)2,,7‘2 e
L% (Tfiy%-l_—y—;y)_ —20s,
Lh#=L"% (1+U)E(1)1/_2V) 712,
lezé{_lj-l__ (o1 + 02) }%’
Lms:%{gEI—— (os+ o) }%’

[P35 > 11;{[ (et 03) } (17)

and all others are zero, where we defined /=1/J
=1/A1A.4s and we used the following current
metric tensor

gh= 12, g%=g*=1 and g¥=0 for j=j].

Now the corresponding prebuckling moduli are,
using the physical components of the Cauchy

stress,
L= {mEIT)%T =
L= 1= (l+u€{;j—2!/) 712’
L”“‘WL‘)%
e {——~+(m az)}%’
1313 {v.—+(al O'a)}%’

1
[P= > {—‘*—‘f‘ (02— 0'1)}7,

Lzazazi{*—+ (Ga—~03) )}

oo L EI 03— 01) }%’

Jose ; {%+ (05— )},

[z é {%— (o1+ 02) }%}’

A= é { IEI — (daj— 0‘1)}_:7’
L3223=7{T+"'“_ (o2t 03) ), (18)

and all others are zero.
Also we have, noting that p,=— g3(7,),

_ 03
NM22 pj22LL— AFIISS  ASSII_ -7

[o)
N1221=N2”2=N1331=N3“3=732~,
NBPB= NB2= _ 5 N8R NEB_ 5 (]19)

and all others are zero. These moduli are defined
as,

Lukl_Lukl+ O.tkgjl thl.l
N:lel_p (g gkl__gng;k

and assmmed as,

NkllJ

L= L”"’+L"“5+L’“”"EZ+L”“63+..-

L= L"”’+L“"’e+L”“62+L“’”53+...

iR R Nkl - N4 RIS 4
We should note the following relations for the

above assumptions in this particular case,

7’271‘{1—'_5(5"{"%)}’

o9&’

2
e +y) D=0,
Lo L aerdy cr3e+- e
77 2t T E+7)€+ (E+—2')6

—4(E+5) '+ S (E+ ) et ),

i1 = 4D e+ 10(E +) %
~20(&+5)% ..}, (20)

and with the following expansions of the Chris-
toffel symbols,
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o 1 2
ii=Tk+Tie+ T 62+F e+ ...

1

with [} =I=—, I'3= —», and others are zero.
v

Or, we have

0 1 ! 1 1, 2 1 1
Fl._, 1. ___* s | —)\2
31_7’1‘, 1-;!1_‘ ri(5+ 2)’ Rl Vi(£+ 2)

ni= -1+
31 s 2 )

etc.,

0 1 1 2 3

HSI: Vi [ﬁz - ri(€+7)’ [‘15{:1—‘8==O,

and others are zero.

4. The Stability Analysis

In this section, we obtain the asymptotic stabil-
ity solution for the pressurized long cylindrical
shell, applying the general stability theory devel-
oped in Part 1.

The lowest order analysis is as follows.

Since the current cylindrical shell’s thickness }
is cornstant, the lowest order general solution is,

]
0 _FlsJﬁ‘lul’ﬂ:O’
G aipl __ LaJﬂl Laj3k (2377131:) —liSmﬂt
F UBl Nuﬁl Nij3k (231311) —1237'1?[
0
EF1UME+F2WI~ 21

0o o
(G By, ,9)
with

Now, we define the asymptotic physical compo-
nents as, for the convenience,

0 (4] 0 1] Q0 )
W= ¥iVs U™ Vs U™ Ur- (22)

Using these, we may have, and

(6‘T
a6°

And the lowest order moduli are

o L sy Lo,

1] 0 0
GU=2(1+a) (1=1n) 74,

] 0 l ] 0
GH2= G = (1 - (1+2a) Ind)} 7,

0 10 9
G2121 =?A(l —ln/i) 7’;‘2a

0 10 0
G¥t==-A(1+Inj) 7,

] ¢ g
G#2=/4(1+q) (1~yIny),
0
3;1313_;2(] +a) (InQ) ré,
g;zazazzalnfi, (23)

and also we have

0 ] 0 0
FPP=Fi=4(1+a) (n) 7,

Fazza anaz—d(1+a)ln/1,
Fuaa Fssuz ~A(1 +a) (IM) ré,
F%zsa:F?”Z: —A(l +a) ln/i,

with J= e

—a -y’
(14+) A

Then, the Eq. (21) may take the following form,
with the change of variable as x= 2/,

(I+a) (1—In}) %g:+*(1—1na>@ﬂ+- t2a
(1—In}) gzg;+<1+a>(1—lni’n—";—§,1=o,
1222 (1) g;g +5-(1+1n}) %;”;+<1+a>
(1—in) %:” e (1+a) lnﬁ}—‘;—?:o,

0
alle

(1+a) (1—Ind) %+ {a— (1+a) 1)

(1+a) (InQ) ‘f;;’; ~ a(Ind) a ”’ +(+0)
(1—21In) 9, =0, 24)

which is the desired coupled partial differential
equation governing the lowest order mode. In
order to solve the above equations, we should
note that the mode is periodic in the angualar
direction for the long cylindrical shell. And
hence, the solution should be the following form
for the nonaxisymmetric buckling.

[1] Q
vs (8, x) =un(x)sinnd,

0 0
v2(8, x) =uvn(x)cosnb,

0 0
vr (6, x) = wa(x)cosnb, (25)
where »(+0) is the angular wavenumber. Insert-

ing (25) into (24), we get the following equation,

0
1 d un_+ l+za dvn
2 di bl ”dx

0 0
(I=Ind) {n* (1 + @) un—
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0
+n(l+a) w.}=0,

0
ﬁ%zi)(ulnﬁ)ﬂ‘ﬁ(l 1) et (14 @)
dx 2

d* vn dun

(l—uln/l) +{a—(1+a/)1n/1} v

=0,

aUn
dx

(1+a)(1~1r1/1)nun+{af (1+a/)1nA} +(1+ @)

{03+ (1—2100) } 20 — a(ln,l)dw” —0, (26)

Boundary conditions are discussed as follows.

Constant Axial Displacement Condition

It is assumed that there is no difference of the
axial displacement between two possible solu-
tions at the onset of the instability, which also
ensures the prevention of the rigid body motion,
possibly. Under this assumption, we obtain the
following condition,

Uz:() at z=0,¢.

No Shear Traction Condition
The traction increment is,

ATj:L"jklAuz,kni-

There is no shear traction on the two free ends,
le.,

AT'=47%=0 at 3==0, ¢,

from which we may have the following condition,
in terms of physical components,

0ve/ 02=3v,/5z2=0 at z=0, ¢.

Finally, we obtain the following boundary condi-
tion

V2= 0vs/ 02=0v,/02z=0 at z=0, ¢, (27)
OF, 1= Bttn/ 5t = D10/ 3x =0,
at  x=0, XO(EE/K‘)- (28)

Hence, we are ready to obtain the solution of the
coupled ordinary differential Egq. (26)
straightforward manner. The solution may be the
following form,

in a

0 0
Uun(x) =ue™,
0 4]
vn(x) =ve’™,

2w (x) = 0e™ (29)

Inserting (29) into (26), we get the following
equations,

[A+a) 2= r4/2) (1=Ind) o+ (1/2) (142a) nr

(1=1n3) o+ (1 + @) n (1 —Inj) 10=0,

(1/2) (1+2a) nr (1—1n3) gt {—
+(I+a) 72— 0 o+ {a— (1+ @) In3)  jp=0,
(4@ n (=10 u+{a~ (1 + @I ro+ [(1+ )
{nzln3+ (1—21n31) }— (30)

(1/2) 2(1+1n )

0_0
ar’lnA]w=0.

Hence, we should have the following characteris-

tic equation for the nontrivial solution, i. e.,
Ar®+Bri+ Cri+ D=0, 30

with definitions

A=a(1+@) (In3) (1=1nj) (1= yIn),
B=(1—-In)[{— (1+a) (1+3a) +lna} w2l

—(142a) + (1+) 2+ a) I

+(+a) (1-a) (In)?],
C=n*(14a) (In3) (1 -In2) [n22+3a+

(1+ @) nj) +3+2¢+21n4],

D=—n*(2—1) (1 +@)*(Inj) (1 —Ing) (1+1n).
Or, defining ¢= »?, we have three roots of ¢, i, e.,

fo by ot six roots of 7, i. e, r=+ bk, £Vh,
Jt;. Therefore, the corresponding solutions are

:;O(AOCOSh Vtox + Bosinhy/fx)
+ ;l (Aicoshyhx+ Bisinhyt x)
+2¢2(Azcosh\/_t;x+stinh\/Ex),
:(z))o(Aosinh/Ex+Bocosth—ox)
+ (Z))l (Awsinhy# x + Bicoshyt x)
+(z])z(AzsithEx+Bzcosth—zx),

= Aocoshytx + Bosinhyhx)
+ Acoshytx + Bisinh Vi x
+ Ascoshytx + Bssinhyx.  (32)
Now we apply the boundary condition (28) to get
the unknwon constants (A, A:, Az Bo B, Ba).
Taking a proper operation, we may get following

gln (x)

0
Un(.x)

Z(/)Un (x)
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values,
A1:A2:Bo:Blszzoq Sil’lhx/EX():O
with 4,0 (arbitrary). (33)

Or, equivalently, we may obtain the following
constraint,

-, integer).
(34)

loxo=mni (m=0,1,2,3,

Or, defining w=mx/x, we get

fh=— o’ (35)

Hence, finally, we get the following complete
solution,

0 0 .

ve(6, x) = Vesinnb coswx,

0 0

vz(8, x) = Vicosnbsinwx,

0 0

vr (8, x) = Vycosnb coswx, (36)

where »(=0) is the angular wavenumber and =
mrr:/ € (m is the axial wavenumber, ¢=cylinder
length). Now, we are ready to obtain the charac-

0
teristic equation governing A. Noting that 4 = wi
is one of roots of the Eq. (31), we get the follow-
ing ecuation,

— Ad’+ Bo'— Co*+ D=0.

Or, we may get the following equation,

(=D {(1+ @) nt+-2) 5 (14 Ind)

+(l+a) (1~u1nfi) {1+ @) w2+ aw?)
(n3) + (14a) (1 =20 ]+ (1422) (1 —1n)
(e~ (1+ )3 (1 + @) (1— Ind) w2et—{a—
(1+a)1n/01}2(1~1113){(1+a) n2+w72}a)2

—i‘;ngﬁa—ln%zu(wa) 7+ ae?)

(In) + (14 ) (1-2In3) J?e’— (1 + @)°
(1—11131)2{%(1+1n/0’1) 2+ (1+a)

(1= y1n) @?) 2 =0. (37)

0 .
Obviously, A has its maximum (and so its

corresponding load is minimum) at =0, from
0 0
tgle Eq. (37). And unknown constants ( V, V7,

V,) should satisfy the following equation,

l+2a
T2

(1=1n7) new Vz+ (1+a) (lwln/l) V=0,
L2110y no Vit 1

{(I+a)n? +—}(l—ln/1) Vot

4]
(1+1InA) #w*— (14 @)

(1= In) o} Vo +{a— (1+a)ln3}w v, =0,
(14 @) (1-100) 2 Vot {a— (1 + @) Ing o Vi
+H{(1+a) (n) 2+ a(Inf) &+ (1+a) (1 —2In3}
V,=0. 38)

Now that the load parameter A is a functi on of ¢,
we have the following general criticality feature,

0 g 0
Acr:A(wcra ncr) »

Acr"/i(wcr’ ncr) + (wcr, ncr) U)cr,

1
2 2 0 0 1 1
Acrza(wcr’ ncr) + 6/1_(0)”’ ﬂcr) Wer +—5-
dw 2

8“/1

12 8/1 [ 2
aw (CUcrs ncr) a)cr"‘%(wcr, ﬂcr) Wers

2
3 3 0 0 1 l
Acr = AlWers Wer) +‘a/1 (wcra ncr) Wer +5
dw 2

A ;

2
w =5 (wcrancr) CUcr+ gj} ((Ucra ncr) Wer

1 3 2
+— 6 g 3 (wcr’ncr) CUcr g 7] ((I)Lrancr)
1 2 ;0 3
Wer Wer +3‘A(a)crs Her) Wer (39)
w
etc., with
0 o
bai(a)crs Ner) =0,
()
1
1 0
Wer = ”\af}/ﬂ at W= wWer» U= Hers
834/80)2
0 0
_ _(_9_& 82/1 1 _a_?»il 2 32/1
Wer ( (9&) + W Wer EPE Wer Cl)cr)/ o
at (l):a)cran: Hers (40)
etc.

]
Obviously, @.,=0 from the characteristic Eq.
(37), and the corresponding lowest order critical
load parameter and wavenumber are

0 0
InA,, =0 or A, =1
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[}
for n#0, n=1, all y and ., =0, (41)
and the corresponding critical load is
0
E o inj.=o0.
(l - Vz) Acr T=v

Now, to obtain the corresponding solution, we
define

0
(po) cor=—

<> 0 <otzs
+G ) nw,

<nez> g &<zuz>) nw
s
[

0 Q
<1212>n2_+_ G<2222>w27( G<2211>_Fl<2332>) @,

1111 9
< >n2+ G<2121>w2’(

<llll>n’ (

Do
e Qe

Qc Qo

0 0
<1111> (G<2211>_F1<2332>) W,

0

G

G°<1313> 2L G<2323>w2+ G<11u>+1‘} <1138> J
(42)

where we defined the asymptotic physical compo-
nents of the moduli as

O its Oy [T 0 0 O
G =Gy £::8i;&reLu (NO sum),

1 1 0 0 0 0
Fo*> =3k | giugiigengu (no sum),

0 0 0
with g, =7} g»=gn=1 and others are zero.

And then, the Eq. (38) may take the following
form

[
Ve
0 . 0
[A{ VI ={0} with {(V}=| 7, |, (43)
0
Vi
from which we obtain the following solution

1}
2
%/9: _ ncr{ncr + 2+ ) (u%,} ‘I’/r,

0
(n%r + CU%‘r) 2
V.= g@ﬁ@;ﬁ@ﬂwfwmlw_l
(ncr + CU%r) z
or
0
Ve=— Vr, Vz 0, V,—l for a)c,—O
Rer
(44)
The first order analysis is as follows.
The general first order solution is, for the

constant current thickness structure,

172 0“”1 1 .0 1 0
/ {G 7 ul,ﬂ+Gajﬂlul.ﬂ)v?z+ (5. G™#!

+FJ Gtﬂmﬂ+1‘u U3mﬁl) ul ﬁ}ds_ (FSJBlwl R

+F3Jﬂle.ﬁ+f’_‘2jﬂlut‘s) =0, (45)

with

1 0. 0.0 1 1.0 0

Gthl:Lukl — LuSm (L3n3m) —lLZ!nlzl — Lu3m (L3n3m) —1L3nlzl
+263m ([0,3”3’") —1i3n3p (i3q3p) —IIOJ.’iqkt
E:;Z:‘jklé+ Yi'ijm’

bjkl:iiﬂm (zanam) —l;;*ankl’

lGijkl: IGijkl+ (ljijklE)%ijPQE+ )l/'iqu,

and

1 2 1 0 1 1 0

Fukl:szkl_Nu(im (L3n3m) —1L3nhl +Nuam (Lansm) -1

111371317 (z3qap) —li.’iqkl — Izvijiim (i3n3m) —IIOISIIM

Ell;‘i‘jkléz_+_ }lj‘%jklf+ ﬁé‘ju,

i/ijht J— ]]vijsm (zanam) -1;;\371&1’

Ii;‘ijklzll,‘ijhl + i/ijklzl%‘?klEZ+FLéjklE+1—;":§jkl,

and

azlu 0 sisty—1¢ S aimk’ Fajak :

3—5:_(L’ ) L Upg—~ L¥** un " 3s) =B,
or

11 1

w=Bi&+w(67). (46)

Now we define the asymptotic physical compo-
nents as

1 11 1 1 1
M=7:ilWe U2™=Wz» W3=Wr-

And then, using the updated moduli, the solution
(46) may be

;{1 {_(avr—z o)§+Wo}

zltz—— — av’$+ Was
! 603 avz 0 !

-—a . ” 47
Us (30-1- P +v)E+w (47)

The general solution (45) becomes the following
coupled partial differential equations governing
the unknown midsurface values in (47), after
quite a long algebra,

G<1111> aag)z6+c<2121> aaWG+(G<1122>+G<2112>)
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g;g); + G<””> aaw’ = — gisinnbcos wx,
(G<1221>_+_G<2211>) azws G<1212> aawz+G<zzzz>

aZWz_

0 9 Gw .
Ak (G#1> — Ffma’)*a;i: — gsinnfcos wx,

1 1
2;<1111:- aaf'ge + (2;<1122>+%~1<3322>) aawz _ &<1313>
X

1 1
%_&232%%}2’_4_ (OG<1111>+[0:1<3311>) ZlUr
= — gycosnfcos wx, (48)

where g, g, g are terms due to the lowest order
solution and have long expressions (and so their
explicit forms are not recorded) . Now that the
above coupled partial differential equations are
not homogeneous, we should note that the com-
plete solution consists of the homogeneous solu-
tion and the particular solution. Now, the homo-
geneous solution must be exactly same as the
lowest order solution, since the solution of the
homogeneous linear boundary value problem is
unique. Hence, we may obtain the following first
order solution,

1 1
we (8, x) = Wesinnbcos wx,

1 1

w2 (8, x) = Wecosnbsinwx,

1 1

wr (8, x) = Wrcosnfcos wx, (49)
with
1 0 [ 1
We= Vo+ Wep, W= Vz+ sz, Wr Vr+ er,

(50)

where the subscript p means the particular solu-
tion. And the particular solution should satisfy
the following equation

1
L . 1 I?/op &
[Al{W,}={g} with {W,}=| w, | (g} =| &},
1 &
Wep
(51)

Taking a proper operation, we may obtain the
following equation,

(Wl TAH M ={(W,}7{0)=0={g} (1},
noting [A]"=[A]. That is, we get

0 0 0
Vegi+ Vo + Vegs=0, (52)

1
which is the desired A equation.
Now using updated modui and the lowest order
solution, g, g, g take the following forms

0 ]
a= %{n +2(1+v) w*e?— '}

erG“““r —2- u+4u +3v

g2:~2(n2+a)2)“{y+ 2(1— /1} ‘
—8+11,%46,3 +31/
+{2(0+y) + 3 0=y) A ntw?
—{v+2(1-1) %,
(I]/OG‘<1111> 1
&= —(Eg——z)g-[{l+2(n2*1+w)2)/i}n“

1
+{2(1+v) +2(—3+ v +250°+2v0?) A} n?0?

F{ =242+ 2(=34+ 20+ 2+ ucoz)/li}w“]-
(53)

1
Hence, we may obtain the general expression of A
as,

A= —2(1=1?) w'(n*=w") /[2(*— 1+ vo®) n®

—647 3 Y
+{~%{T§7&+8(n“—l+vcoz)}newz
L2417y =24
+{ 1iv LY

+12(n*— 14+ ve®) } ne?
+{ —244+52y— 162 —15,8—6p4 =3,
2(1—1)

+8(n*— 1+ ve®) tne®+{—-2(1—1)22+)
+2(n2— 14+ ve?) }o®]+ (lnfi);’tjwz,nz,u)- (54)

We can notice that ,11 is an even function of ¢, #
Now from the general criticality features (39) and
(40), and using the lowest order criticality (41),
we can deduce the following first order criticality

1 1 0
Acr :A(C()cra Her) =0

1
P T P S (55)
82/1/ 0w?
and the corresponding critical load is
2 E 1
(po) cr = —_1:7/1“ =0. (56)

And the corresponding critical mode may be
obtained, using updated moduli and the mode
orthogonality condition, as
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1 1 o 1 1
We= T2, Vr, W,=0, W,=0. (57)
Her

The second order analysis is as follows.
The second order general solution is, for the
constant current thickness,

2 0 2 11 2 0
/:1/2{ (Ga"ﬂluz,,g'i‘ Gajﬁlul_,g‘i‘ Gajﬂlul'ﬂ) , g
0 1 0 1. 0 1
Iae (G i+ G™ 11,8) + Mna (G 11
1 0 2 0 0
+ G u1p) + T'ea G 11,6
2.0 0 o 2 0o 2
+ e Gamﬁluz.s} df - {F?JM wist ngﬂlDz.ﬂ
11 11 2 0
+ ngﬂ[Bl,B + Fzﬁmwz,ﬁ"F Fg”“ Ui
o1 03'12 la'ﬁzl Aa'ﬂto
+T(7F1Jﬂ BisFV B o+ F¥u.))
1720 0 1 0 1
— 1/2[{La13k (L3m3k) —lam}, (¢)1+FJrrt30m
Pl 0 1. 0
_ Jma Usmﬂluz,p]df—{Aaﬂk (Lamak) -1
111 . 0 1
(Ta'm 7/n) + Ba;sk (L3m3k) —1Bm}’ (58)
with

2 2 [ 0 2 (O
Gukl:Lukl_Lzﬂm (L3n3m) 41L3nkl+Lu3m
(z3n3m) —1i37!3t (23P3t) —1[1139121 _ [O‘ij.?m
(iBn(im) 71[113n3t (23#3:) ~1[143p3q ([O‘3T3q) -1
23712[ _+_ zij3m (23"3»1) —11243713! ([Ol3ﬂ3t) -1
z(&pkl _ lllijiim (23713”!) —liSﬂlzl + llll'jiim
(loanSm) —1i3n3p (lolar'a‘p) —1[0‘37111 _ iz’jf&m
([0‘3n3m) —IE‘Snkl
f]b’kl* {lllij(it

Gukl Gz]kl+ Uukl
and

0 2 1
Fukl Nulzl Nz‘j3m (L3n3m) —1L3nk1+Nz'jSm

(L3n3m) —liSnSP (erap) —1[1137121#]1\[1'1'3”1
(23}137’1) —1[11371317 (237317) —li\?rSf (l0,3q3t) -1
0 1 0 2 0
L3qkl+NuBm (L:insm) —1L3n3p (L3r3p) -1
;‘Brkl_]zvijsm ([0‘3713171) —1[113nkl+]2v1‘j3m
(23n3m) —1i3n3p (23739) —1237‘}:[ _ ]3vz'j3m
(10‘3713771) —1[013nkl’

2 1 9 1 2.
Vki—= {Njam (L3n3m) —1L3nap_N13p}

0 0 1 0 0
Lu3m (L3n3m) —1L3n3t} (L3,D36) —IF:«)pkl’

0 0
(L3t3ﬂ) ~1F3tkl

Fukl Fukl+ Vukl
And also we have
2

auz:_ Oajsz _1[{ peisk 13jﬂk_13j3n

e (L) T {Fo 4 L L
0 0 0 0 1
(L3r3n) —lLSrﬂk} ulz,/i+ La_;ﬂk Un.p
0. 0 1 1o 2 2

— L¥* (o L+ und 1) 1= BiE+ Dy,
2 l 2 2 2 2
or u1:7BI§+sz+ w (69), (59)
and

! L 1.0 1 o0
a;:/:l/z{(GaJﬂlul,ﬁ+ Ga;ﬂlul,ﬂ),(‘)1+ (anaGmJﬁl

1.0 0. 1 0 1 o..
+FJ Gamﬂl+FJ 3 U'smﬂl) s /9} dé_ { (_ F3Jﬂl
L 31;91

Jﬂ[)(__BlB+WIB)+(__F1

+7F3"‘”~F§j’“) uz,,q}Eaf"$2+ﬁfé‘+ yj- (60)

Now using updated moduli, the solution (59) may
take the following form,

0
2_31/ al)r

0 0
1, v i(ave 8vz)_
l—y 08

2
w=rly 12,5656

o, 0 1 awr
+2UG}E +(—vet+2we— )5+W6]

0
v 0 (ava+avz+?jr)52

2(I—u) ox 98 " ox
8w’5+wz,
0
2 (8?)r 81}r+ v 0vs
2(1 1/) 06 " ox* T 1—y 96
0
)y, avz l 2, v dve
+ l—y ax U’)é ( a6
1 1
1°  Jw, Jw: ! 2
+—2—1)1—4“60 - a_x _Wr)$+WT, (61)

where we defined the asymptotic physical compo-
nents of the unknown midsurface mode as

2 2 2 2 2 2

UN=T7ilWs U™ Wz U= Wr-
The general Eq. (59) becomes the following cou-
pled partial differential equations governing the
unknown midsurface second order mode in (61)
as shown below,
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2 2
o (OG<1111> a;g)ze + OG<2121> azuée) . (OG<2112>

2
0 2
+ G212 gggu; G‘““> 8awr = fisinnfcos wx,
2
_ (0G<1221>+OG<2211>) P ws (G<1212> azwz

000x

2
0 o P00 0 624) :
+ G<‘3222>-’g}7{) —G<22”>—ax—r=fzcosn6’smwx,

2 2
0 aw 0 aw 0 2
1111> 8 1122> 2 111>

G T G* ST G,
= fycosnfcos wx, (62)
where £, £, f; usually take the long expressions
(and so0 their tedious forms are not recorded). As
discussed in the first order analysis, the general
solution of the Eq. (62) is,

2 2

wel 8, n)= Wesinnbcoswx,

2 2

wz (8, n) = Wcosnbsinwx,

2 2
wr (8, n) =Wrcosnfcos wx, (63)

where we may have,
2 0 2 2 0 2
Wa: Va+ Wap’ VVz: Vz+ sza
2 0 2
Wr=V:+ Wy (64)

The particular solution should also satisfy the
following equation

2 2 ﬁVoﬂ fi
[AN W, ={7} with {(W,}=| 1, |. {£}=| £ |(65)
2 5
Wi

Also taking the same operation as in the first

2
order analysis, we have the ] equation as

0 0 0
Vafi+ Vefot Vifa=0. (66)
Now using updated moduli and the lowest order

and the first order solutions, f,, f,, f; may take
following forms

OG<1111>
h=mi—yy e B 3 - e
-3Q2~-5y) n*w'—~3(1-2y) 0*—3uvn*
—3(T+2y—6,°) n*w*+ (24—44y
0
=3+ 11 o'l v,
n 2(1—2/;20;((;1)* ve?) o G<1111>/1n V

1111>
fe= 24(1—uG)<(n2+w2>““+2””

+3 u(1+1u)n —3(1'—2)/—2),/2)71 w?
—Q2-3y=20" — (1+2,) »*
—9Q2+y -2 nef+y(2-21y

1111>

+13)w }Vr+—2—-—7—7{ -2+ n
(n"+w

—|~(—3+u2)n2 2-1—(1*1/—*1/2)(11‘}3(0?/,-,
(”‘<llll> 2 "
fi= 24(1= 1) (#2 _+_w2)21 2(1=v) (W + 0?
+@—y)nt+ (12—4p+ 1) n'e’+ (8+417
=3 et +3v(l+v—1% o — 2+ ) #*
+(=2842p+170%) nPa’+ (40-- 59, — 25,2

1]
<1111>
+381/3)w} Wg{ (12 + vo?) (n?
+ o)+ '+ G- ) '+ (3-2p
20
—213) w'}A Vs (67)

2
Hence, we may obtain the following A expression,
using (66) and (67),

A= (= 2(n+ )+ 4R+ 2408+ (4845
+50H) nfwt+ (40415, + 157 nte+ (12
+15v+1518) n?wt+50v (1+ 1) 0" —2#°
—12#%0*— (18+5v + 518 ntw'+ (4—28y
=235+ 17%) P’ + (40— 19y ~ 46,2
+1313) 0% /24{ (#*+ vo®) (P + 0®) *~n®
- (142y) n®a®+ (=32 + 21 ntw+ (— 10
— v+ 72430 0P 0t + (1—-v) (—3+ 12 of)

f—(ln/i)f(a),n +Ag(a) ). (68)

And so, the critical values are,

2 2 0 %r_l
Acr = A Wer> Ner) = "'JILT_’
@or =0 fOr 10,%0, 1o 1, (69)

and the corresponding critical load is

2
L =EfHe=]) (0
The corresponding solution is obtained as, using
the mode orthogonality condition,

3
(po) cr—

2 aner (Wr ne
Wem Sy Ve Wam

(74cr+3) (ncr“l) 2,

W, = S




124 Youngjoo Kwon

— v
=12 (1)

with

The third order analysis is as follows.

The general third order solution has long tedi-
ous expressions. Hence, recording them is omitted
here, and we just make sure their updated expres-
sions. The explicit forms of the third order gen-
eral solution are also quite long in the general
sense and so they will not be recorded, either. But,
using the updated moduli and the previous solu-
tions, they may take the following simple forms

3

u1=ri[{ (2_—1/) n"(n%"l) 53

6(1—y)
_nc,2—~l 2 Rer (2, — 1) &
27’lcr 4(1—)/)
ancr(n%rﬁl)(n%r+7) g
prIpa T L

-+

3
sinnfcos wx + ws)»
3 3
U= Wz
8 = 14y
“B=le(M—1)

3 v 21 2 ?
£ +2(1_V) S —YE}(ncr‘l) Vs

cosnfcoswx + :ur, (72)
where we defined the asymptotic physical compo-
nents of the unknown midsurface third order
mode as

3 3 3 3 3 3

W=7 iWes Wo= Wz Ws= Wr-
We may also obtain the following coupled partial
differential equations governing the unknown
midsurface third order mode in (72) as

3 3
_ (OG<1111> a;g)za + &<2121> a(;lcﬂa) _ (2;<2112>
3

3
0 2 0
+ G<1122>)%_ G«”“%zhlsinnﬁcoswx,

3 3

0 1] azw 0 azw
— 1221> < 2211> 6 1212> z
(G +G ) 990 (G< 567

3 3
0 Fw 0 dw .
2222> Z\ _ <2211 T
+ G- O ) —G* p heacosnfsinwsx,

3 3
g;<1111> aalrge + g;<1122> aal;c)z + 0G<1111> :Ur

= hascosnbcoswx, (73)

where the extremely long general expressions of
I, hs, hs are not recorded here. The solution of
the above equation is obviously as discussed in

the first order solution, for the long cylindrical
shell, i.e.,

3 3 .

we (8, n) = Wesinnfcos wx,

3 3

w: (8, n) = Wsinnfcoswx,

3 3

wy (8, n) = Wysinnfcoswx, (74)
where we also have

3 0 3

Wo: V0+ Wep,

3 0 3
W= Vz+ Wap,
3 0 3
Wr=V:+ Wa. (75)
Thus following the same analysis adopted in the

3
previous analyses, we have the A equation as

0 0 0
Vehi+ Viha+ Vrhszo- (76)

Now /1, ks hs can be simplified greatly as, if we
use the updated moduli and the previous solu-

tions,
0
h _ aG<llll>n(2nZ+3) (nZ_l) (I)/
= 28007+ 1) "
h2:0’
L]
e — aG M n(2n®+3) (nP-1) %/
o 24(n*+1) 7
_ &<1111>/31(n2_ 1) %/r
noting g= an

11—y’
Hence, finally, we may get the third order critical
values as, using (76), (39)~(40),

3 3 0 3
Acrzli(a)cr, ncr) =0» CUCT=05 (78)

and the corresponding load is

4 3 3 2
(Do) er=— i _Eyi (Acr_TAcr)
__Ei-1
=R 79
Thus, we may obtain the four term expansion of
the critical load parameter as

n?;r‘_'l

ACT=1+06— 12 €2+063+"' (80)

And the corresponding five term expansion of the
critical load may be obtained as,

E(nzcrl) 3

%r“l
(pﬂ)cr=0+0€+062+ 12(1-1}2) & E(n )

8(1—)
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e+ (81)

We can note that the critical load is an increasing
function of the angular wavenumber #. Therefore,
noting 5, #0, 5.+ 1, we can deduce ., =2.

5. Concluding Remarks

We compare our asymptotic result (81) with the
classical Timosenko’s result (Timosenko and
Gere(1960)). Timosenko obtained the following
critical load from his nonlinear theory, i.e.,

3 2r_1
oD,
which is exactly the fourth term in our result (81)
with noting the definition e=/4/»,. Next, we
compare our current result with the incompress-
ible one computed by Triantafyllidis and
Kwon(1987). For this, we should notice the fol-
lowing fact, i.e.,

_h_ ., 1 2, 1 a3
e=-,-=¢ +—2—(e*) + (e*)*+...,

with e*=In’?,

and so we have
0 1 2 3
/Icr:Acr+Acr€+Acr€2+Acr€3+~-
0 1 2 3
2A2r+/1:r€*+/1:r(5')2+/1:r(5*)3+---
with
0 0 1 1 2 1 1 2
A:rz/icr, A:r:Acr, A:rZT/lcr+Acrs
3 1 1 2 3
A:rZFAcr+Acr +/1cr etc.
Now that the result in (81) is valid for all y up to

the &° term, we have, for the incompressible solid
(v=1/2)

0 1 2 an — ] 3
Acr=1, Aer=0, Aer=— 012 and A, =0.
(82)

And so we can obtain the corresponding terms
with respect to g* as,

0 0 1 1

Ar=Aar=1, A% =Acr=Oa

2 2 2 __1

Aer=Aer="— nciz s

3 2 3 2 _1
Ar=Acr + Acr= "'m#

Or,
_ Yo Mer—Ll 4 ¥ova  nEr—1
Aer=14+01n . ) (In 7’,') =
(In %)3+~-~ncr:2’ (83)
with

which is the exactly same result that Triantafyl-
lidis and Kwon obtained in 1987 for the incom-
pressible case.

Now, comparing our result with the classical
one, we may note that we not only obtained the
same result as the classical one, but we also
attained the higher order terms which cannot be
obtained from the classical nonlinear theory and
gives us the much higher accuracy. In such a
sense, our current general theory is very powerful
to compute the desired engineering accuracy.

References

Cheng, S.Y., Ariaratnam, S.T. and Dubey, R.
N., 1971, “Axisymmetric Bifurcation in an
Elastic-plastic Cylinder Under Axial Load and
Lateral Hydrostatic Pressure,” Quarterly of Ap-
plied Mathematics, April, pp. 41 ~51.

Donnell, L.H., 1956, “Effect of Imperfections
on Buckling of Thin Cylinders Under External
Pressure,” Journal of Applied Mechanics, Decem-
ber, pp. 569~575.

Galletly, G.D. and Bart, R., 1956, “Effects of
Boundary Conditions and Initial Out-of- Round-
ness on the Strength of Thin-Walled Cylinders
Subject to External Hydrostatic Pressure,” Jour-
nal of Applied Mechanics, Septewber, pp. 351
~358.

Kwon, Y.J.,, 1992, “Buckling Theory in Solid
Structure with small thickness(Part 1),” KSME
Journal, Vol. 6, No. 2, pp. 109~113.

Nash, W.A,, 1955, “Effect of Large Deflections
and Initial Imperfections on the Buckling of
Cylindrical Shells Subject to Hydrostatic Pres-
sure,” Journal of the Aeronautical Sciences,
April, pp. 265~269.

Singer, J., 1960, “The Effect of Axial Con-
straint on the Instability of Thin Circular Cylin-
drical Shells Under External Pressure,” Journal



126 Youngjoo Kwon

of Applied Mechanics, December, pp. 737~ 739.
Sobel, L.H., 1964, “Effects of Boundary Condi-
tions on the Stability of Cylinders Subject to
Lateral and Axial Pressures,” AIAA Journal,
Vol. 2, No. 8, August, pp. 1437~ 1440.
Timosenko, S.P. and Gere, J.M., 1961, “Theory

of Elastic Stability,” 2nd ed. McGrawHill, New
York.

Triantafyllidis, N. and Kwon, Y.J., 1987,
“Thickness effects on the stability of thin walled
structures,” Journal of the Mechanics and Physics
of Solids, Vol. 35, pp. 643~674.



